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The vibration study of a general three-layer conical sandwich panel based on the
h-p version of the "nite element method is presented in this paper. No restriction is
placed on the degree of curvature of the shell, thereby relaxing the strictures
associated with shallow shell theory. The methodology incorporates a new set of
trigonometric functions to provide the element p-enrichment, and elements may be
joined together to model either open conical panels, or complete conical frusta
(circumferentially connected, but open at each end). The full range of classical
boundary conditions, which includes free, clamped, simply supported and shear
diaphragm edges, may be applied in any combination to open and closed
panels, thereby facilitating the study of a wide range of conical sandwich shells.
The convergence properties of this element have been established for di!erent
combinations of the h- and p-parameters, thereby assuring its integrity for more
general use. Since very little work has been reported on the vibration characteristic
of either circumferentially closed or open conical sandwich panels, the main thrust
of this work has been to present and validate an e$cient modelling technique,
rather than to perform numerous parameter and/or sensitivity studies. To this end,
some new results are presented and subsequently validated using a commercially
available "nite element package. It is shown that for results of comparable
accuracy, models constructed using the h-p formulation require signi"cantly fewer
degrees of freedom than those assembled using the commercial package. Some
preliminary experimental results are also included for completeness.
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1. INTRODUCTION

1.1. BACKGROUND

The motivation for the present work has arisen from a renewed interest in the use of
sandwich construction as the primary structural medium in the vicinity of the
engine exhaust outlets for commercial aircraft with turbojet, turboprop or propfan
engines mounted at the rear of the fuselage [1]. The structural topology of
sNow at The Department of Engineering, Trumpington Street, University of Cambridge, CB2 1PZ,
U.K.
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Figure 1. A typical proposed installation arrangement for a propfan-powered civil aircraft,
illustrating how the rear fuselage is tapered in a near-conical fashion.
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the fuselage in the region of the exhaust ducts/propeller plane is more likely to form
part of a conical surface than a cylindrical one (due to the tapering of the
tail section*see Figure 1), although it is not readily apparent what e!ect a
non-uniform radius of panel curvature might have on the vibration response. The
most likely form of construction would follow the standard practice of attaching
a number of (open) sandwich panels to an internal substructure of ribs and
stringers, to provide a sti!, light-weight, built-up, monocoque shell structure. These
considerations provide the initial justi"cation for a vibration study of a single,
open, conical sandwich panel.

In service, such panels will be subjected not only to static loads, like internal
pressurization and inertia forces, but also to a variety of intense, randomly #uctuating
pressure and temperature loads which will induce severe vibration levels in an
elevated thermal environment. Under such conditions, due allowance must be
made for the static pre-stresses, the likelihood of large de#ection amplitudes, and
the structural damage-accumulation arising from acoustic and thermal fatigue.
Although such a detailed non-linear analysis, including the e!ect of thermal
degradation of the faceplate and core material properties, is the ultimate goal of this
research, it is important that this capability is realized from a proven history of
successive incremental work programmes, each of which has been thoroughly
validated before proceeding to the next stage. Hence, the study presented here is
best regarded as a preliminary investigation, deliberately limited to a linear,
temperature-independent, free-vibration analysis of all-metallic open conical
sandwich panels having isotropic face-plates and generally orthotropic honeycomb
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cores.s As a precursor to more advanced studies, not only will this work provide
a useful datum against which the validity of future research work can be assessed,
but moreover it will make a signi"cant contribution to the literature in its own
right, since it would appear to be the "rst paper speci"cally to address the topic of
free vibration of an open conical sandwich panel. The most likely reason for such
a surprising lacuna can be attributed directly to the analytical di$culties involved;
for a circumferentially closed, right circular cone or frustum, the two-dimensional
nature of the assumed displacement "eld can be reduced to a quasi one-dimen-
sional axisymmetric problem through Fourier decomposition of the circumferential
wavemotion*for an open conical sandwich panel, no such simpli"cation exists,
and resort must be made to a full two-dimensional solution scheme. Such a scheme
will inevitably be complicated further by the dependence of the circumferential arc
length on its meridional location.

1.2. LITERATURE REVIEW

The general subject area of sandwich construction has been well researched
over the past 50 years, with many signi"cant contributions dedicated to the
dynamic behaviour of sandwich beams, plates, and, to a lesser extent, cylinders.
However, very little has been reported on the vibration of conical sandwich
panels, despite their obvious connection with, and extensive use in, a variety of
aerospace applications. Indeed, every article found to date has been devoted
entirely to the vibration analysis of circumferentially closed sandwich frusta and
cones; although this literature is not of immediate relevance to the title problem, it
nonetheless provides an appropriate reference point which will help position the
current work.

Azar [2] is credited with being one of the "rst investigators to address the
axisymmetric free vibration problem of an arbitrary sandwich shell of revolution,
although he made no direct reference to conical panels. The earliest work devoted
speci"cally to conical sandwich frusta was reported in a series of seminal papers
[3}5] by Bert and his co-investigators during the late 1960s and early 1970s. Bert
et al. recognized the value of adopting a Rayleigh}Ritz energy approach, and took
advantage of the fact that the functions assumed for the displacements and core
rotations in the circumferential sense could conveniently be decomposed into their
constituent Fourier components. The functions assumed for the displacements and
core rotations in the lengthwise direction were chosen to satisfy the geometric
boundary conditions at either end of the conical frustum that were of particular
interest*hence the [slight] di!erence between references [4, 5]. It is certain that
much of the initial motivation for the work on conical sandwich shells was
provided by the all-consuming quest of the United States during the 1960s to &&land
a man on the moon and return him safely to the earth''. It is therefore not surprising
that apart from a single publication by Gupta and Jain [6] in 1978, no subsequent
developments were reported until the early 1990s, by which time large-scale
sIn the near to medium term future, metallic materials will continue to be used as primary structure
in the close proximity of engine exhaust outlets.
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computing technology had matured (thereby rendering the complex analysis task
considerably more tractable than had hitherto been the case), and when di!erent
applications for conical sandwich shells were being explored [7}9].

The increasing use of layered composites resulted in further research activity
during the mid-1990s. Ramesh and Ganesan [10}12] developed an energy-based
model using an assumed linear piecewise approximation for the in-plane displace-
ment of each layer through the thickness, and an assumed circumferential
displacement variation using Fourier expansions. Their latter work [12]
concentrated on the vibration and damping characteristics of a three-layered
conical shell with a viscoelastic core constrained by isotropic facing materials;
the semi-analytical "nite element method they developed was based upon the
displacement "eld originally proposed by Wilkins, Bert and Egle [5], and the
results they presented were also based on the panel dimensions and properties "rst
quoted in reference [5]. Khatri [13}15], and Khatri and Asnani [16, 17] used
a variational approach to derive the di!erential equations governing the motion of
a layered conical shell, and proceeded to "nd approximate solutions for the natural
frequencies and modes using Galerkin's method. Since each layer was shear
deformable, a few studies were presented of a conical sandwich panel which could be
regarded as a special case of a three-layered shell, with shear-sti! outer layers to
represent isotropic/orthotropic face plates. However, the work reported in reference
[16] (and presumably reference [17]) has rightly been criticized by Baruch [18] on
the grounds that the elastic constants for each layer are actually a function of their
spatial position, and not independent constants as assumed by Khatri and Asnani.

Finally, two important and comprehensive literature surveys which provide
signi"cant background material that is relevant to the issues described herein are
worth mentioning. Noor et al. [19] have charted in great detail the design and
analysis of sandwich structures ranging from simple beams to doubly curved shells;
a complementary overview of shallow shell theory has been given by Liew et al.
[20]. Together, these surveys provide a "tting conclusion to the literature review
presented herein.

1.3. MODELLING CONSIDERATIONS

Mathematical models of sandwich-type structural forms must take account of
the shear deformable nature of the core material, which, in a displacement-type of
formulation, is usually accounted for by the use of additional degrees of freedom
(d.o.f ) to represent the shear deformation [21]. It is well-known that approximately
four conventional "nite elements are required to capture one half-wavelength of
vibration in a given direction [22]. Upon considering that most &&sandwich shell
elements'' are actually constructed from three separate layers, each with four nodes
and six d.o.f. per node, it soon becomes apparent that the total number of d.o.f. in
a two-dimensional model capable of capturing, say, the "rst 10 modes of vibration,
is extremely large, and will most likely prove prohibitively expensive for recursive
analyses such as optimization or sensitivity studies. It is against this background
that the h}p version of the FEM [23}27] is presented, since this formulation
promises substantial e$ciency gains without loss of accuracy when compared with
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the conventional FEM. The novelty of the solution scheme developed in this paper
is further enhanced by the use of the highly versatile set of trigonometric
p-functions "rst proposed by Beslin and Nicolas [28].

Whilst certain aspects of the h}p methodology described in this paper (i.e., its use
as a single super-element) might appear to bear a super"cial resemblance to other
global Ritz-type procedures (such as the pb-2 technique advocated by Lim and
Liew [29]), it is su$ciently distinct to justify its appellation as a genuine FEM.
Since the h}p version of the FEM reported here is formulated on an individual
concial element basis, it possesses at least three characteristics which distinguish it
from the global technique described in reference [29].

(i) Shells with cut-outs and/or irregular boundaries could be modelled. (This
feature is not readily apparent here since only a right conical panel is being
considered.)

(ii) The general nature of the formulation means that the structural sti!ness and
mass matrices are completely generic and have only to be computed once
*speci"c boundary conditions can then be applied in any combination and in
any order. This is signi"cantly more versatile than the pb-2 approach reported
in reference [29], in which the assumed displacement "eld is boundary condi-
tion dependent and therefore has to be constructed speci"cally for each
particular boundary problem. In this context, it should be noted that the h}p
approach presented here permits an open conical sandwich panel or a closed
conical sandwich frustum to be modelled with equal facility and robustness
*this level of versatility is simply not possible with the pb-2 approach, which
would require quite di!erent de"nitions of the circumferential displacement
"eld in order to model each case.

(iii) The h}p method can be tailored to the problem in hand to provide an e$cient
solution. For example, consider the vibration of a circumferentially closed
shell, in which a relatively large number of half waves can establish themselves
around the circumference in a given mode. A global Ritz approach would have
to include a large number of terms in its description of the assumed displacement
"eld to capture these modes with con"dence*this is computationally
expensive. In contrast, the h}p method reported here enables the "nite element
mesh to be subdivided around the circumference, thereby providing a much
more natural and e$cient modelling technique for this sort of problem.

1.4. SCOPE OF THE WORK

It should by now be evident that the amount of work pertaining to the free
vibration of completely closed conical sandwich shells is actually quite meagre, and,
as stated earlier, the case of an open conical sandwich panel remains wholly
unsolved. The purpose of this paper can therefore best be summarized as follows:

(i) To produce an e$cient and reliable analytical model capable of providing
solutions for the natural frequencies and associated normal modes of generic
conical sandwich panels, using the h}p version of the FEM;
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(ii) To validate this formulation against known results for (a) open conical
sandwich panels and (b) complete conical sandwich frusta; since there is no
other published work ful"lling remit (a), veri"cation will have to be made
against results forthcoming from a proprietary "nite element package; remit
(b) can partially be ful"lled by making reference to existing work in the open
literature, but some additional "nite element results will also be included for
completeness.

(iii) To provide some initial experimental results for some speci"c open conical
sandwich panels, and to use these results as the basis for a comparison with
the theoretical analysis, given the absence of other numerical data; to this end,
four di!erent conical sandwich panels*each fabricated with aluminium face
plates and overexpanded aluminium cores [30]*were produced for testing.

2. METHOD

2.1. ASSUMPTIONS

As with all work of this kind, a set of initial assumptions [21] must be made with
the aim of capturing the essential properties of the physical conical sandwich panel,
whilst permitting an analytically tractable solution to be obtained. For the problem
under consideration, this set may be summarized as follows.

(i) There is no signi"cant direct strain in the core perpendicular to the plane of
the face plates. Hence, both the face plates and the core de#ect by the same
amount normal to the plate surface.

(ii) There is no signi"cant shear strain across the depth of the face plates. Hence,
only the core will carry the shear strain, which is assumed uniform through
the core depth.

(iii) The face plates are considered to be isotropic, and to possess both axial and
#exural sti!ness.

(iv) The core is considered to be generally orthotropic, and to possess both axial
and #exural sti!ness.

(v) The sandwich plate is assumed to behave elastically, and is subject to small
displacements.

In what follows, the lower face-plate will be referred to as layer 1, the core as layer
2, and the upper face-plate as layer 3. The mid-plane of layer 2 is taken as the global
reference datum from which all subsequent deformations are measured. (Note that
this reference datum will not coincide with the geometric mid-plane of a panel
whose face-plates are not of equal thickness.)

2.2. ASSUMED DEFORMATION PATTERN

Consider a particle at a general point x, h, z
2

within layer 2. In its deformed
state, the position of this particle is related to the layer 2 mid-plane displacements
by
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Figure 2. The conical sandwich panel element. The core ribbon direction is parallel to the cone
generator.
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where u
02

, v
02

, and w
02

are the displacements of the layer 2 mid-plane, and \t

and t are the rotations due to shear deformation of layer 2 about the x- and
h-axis respectively; see Figure 2. Equations (1) can be rendered in matrix
tIn e!ect, \"[v
02

cos a!(Lw
02

/Lh)]/R(x), on account of the v
2

displacement taking place along
the curved h co-ordinate direction.
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format as
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where d
02

is the vector of layer 2 mid-plane displacements. By similar reasoning, the
displacement of a particle at a general point (x, h, z

3
) within layer 3 is related to the

layer 3 mid-plane by
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where u
03

, v
03

and w
03

are the displacements of the layer 3 mid-plane; see Figure 3.
Compatibility between layers 2 and 3 is enforced by ensuring that every particle on
the upper surface of layer 2 occupies the same position as every particle on the
lower surface of layer 3, i.e., There is no relative slippage permitted between the core
and face-plate. Hence, by equating equations (1a), (1b) and (1c) with z

2
set equal to

h
2
/2, to equations (2a), (2b), and (2c) with z
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set equal to !h
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/2 respectively, the

following compatibility relationship is established:
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Equations (3a) can be written more compactly as
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. (3b)
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In a similar manner, enforcing compatibility between layers 2 and 1 yields
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Equation (4a) can be written more compactly as

d
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(4b)

2.3. STRAIN-DISPLACEMENT RELATIONSHIP

The strain}displacement relationships [31] for the conical outer face skins (layers
1 and 3), related to their own mid-planes, are
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where subscripts 1 and 3 refer to the appropriate face-plate. The two equations
shows in expression (5) may be written in the form
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Figure 3. The assumed deformation patterns (shown in the x and h directions). (a) Meridional
assumed displacement pattern within each layer; (b) Circumferential displacement pattern within each
layer.
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In order to relate these face-plate displacements to the core mid-plane
displacements, it is necessary to use equations (3b) and (4b) such that e
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where K
1
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R

1
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. The strain}displacement relationship for the

shear deformable core can be written [31] as

C
e
xx
ehh
chz
c
xz

c
xh
D
2

"

L
Lx

0 0 z
2

L
Lx

0

sin a
R(x)

1

R(x)

L
Lh

cos a
R(x)

z
2

sin a
R(x)

z
2

1

R(x)

L
Lh

0 !

cos a
R(x)

1

R(x)

L
Lh

0 1

0 0
L
Lx

1 0

1

R(x)

L
Lh

L
Lx

!

sin a
R(x)

#z
2

cos a
R(x)

L
Lx

0 z
2

1

R(x)

L
Lh

z
2 A

L
Lx

!

sin a
R(x)B

C
u
02

v
02

w
02
t

\
D (7a)

e
2
"K

2
d
02

. (7b)

Note. The entry in the second column of the "fth row of the above, K
2

matrix
consists of three terms. Soedel [31] only mentions the "rst two of these in his work;
the third term, which is dependent on z

2
, must be present in order that equation (7a)

reduces to equation (5) for a conical panel in which the shear deformation e!ects are
negligible. Hence the authors have included it in this work.

It is convenient at this stage to render equations (1)}(7) in terms of non-
dimensional element-local co-ordinates m, g which are related to the element
Cartesian co-ordinates through m"(2x/a)!1 and g"(2h//)!1, where / is the
total angle subtended by the mid-plane circumference of the panel; see Figure 2.
Note also that every occurrence of R(x) is replaced by b(x)//, which in turn can be
written as b (m)//, since b(x),b(m), so that there is only one m-dependent term
(b (m)) in any given expression.

2.4. LAYER CONSTITUTIVE RELATIONS

The standard constitutive relations [31] for the isotropic face plates, and the
generally orthotropic core, are written as follows:
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2.5. CHOICE OF ASSUMED DISPLACEMENT FUNCTIONS; BACKGROUND

TO THE h}p VERSION OF THE FEM

The h}p methodology adopted is similar to that presented elsewhere by the
authors [32], so only the essential details are given here. In brief, the h}p version of
the FEM my be regarded as the marriage of the conventional h-version and
p-version; convergence is sought by simultaneously re"ning the mesh and increas-
ing the degree of the elements [23}27]. For the type of problem under considera-
tion here, in which the motion in all "ve d.o.f.s is coupled, it is advantageous to
represent all the displacement "elds by the same set of assumed modes. This greatly
reduces the computational e!ort required to calculate the element sti!ness and
mass matrices, and simpli"es the element assembly process.

To this end, an ascending hierarchy of special trigonometric functions [28], used in
conjunction with Hermite cubics, will furnish a complete set of admissible displacement
functions f (m or g); see Table 1. The motivation for using trigonometric, as opposed to
the usual K-orthogonal polynomial [32] hierarchical functions, is on account of their
improved performance when modelling medium frequency deformations.

The hierarchical modes contribute only to the internal displacement "eld of the
element, and do not therefore a!ect the displacement along the element edge or at
the element nodes. However, products formed between any of the trigonometric
functions and the Hermite cubics will constitute what amounts to edge freedoms
along the element boundaries. Adjacent elements may be joined by ensuring
compatibility of both nodal and edge displacements. The use of what e!ectively
amounts to C

1
continuity functions to describe the in-plane and shear deformation

displacement "elds*which possess C
0

continuity*is justi"ed on the grounds that
no attempt is made to enforce ,rst derivative continuity of any of these quantities
across an element interface.

Hence the in-plane, out-of-plane and shear deformation master displacements
can be represented as the following series expressions:
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TABLE 1

¹he ,rst 10 assumed displacement functions
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This can be expressed in a more compact matrix notation as
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] and N is a rectangular matrix with 5 rows.
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2.6. PANEL ENERGIES

The strain energy of the panel, which is given by
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can be constructed from equations (1}9) as
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The terms within parentheses are recognized as the element sti!ness matrix KE.
Similarly, the kinetic energy of the panel element is given by
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Substituting equations (1e), (3b), (4b) and (9) into equation (12) yields
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The terms within parentheses are recognized as the element mass matrix ME. Note
that in-plane inertia and rotary deformation e!ects are contained within this
expression on account of the coupling that exists between the various displace-
ments characterizing each layer. It is also worth pointing out that K

i
and R

i
both

contain di!erential operators, rendering the evaluation of the sti!ness and mass
matrices shown, respectively, in equations (11) and (13) far from trival. Symbolic
computing was used to determine the form of these integrands, but the subsequent
matrix multiplication and integration required to evaluate them was performed
numerically by using a Gauss}Legendre quadrature scheme. This scheme, which
was implemented by using commercially available software [33], dynamically
allocates the number of integration points required to ensure a pre-determined level
of accuracy.

Inter-element compatibility is achieved simply by matching the appropriate
generalized co-ordinates at common element nodes and along common edges, as
explained earlier. This procedure ensures the elements are fully conforming*in the
conventional sense*and, moreover, facilitates assembly of the global sti!ness and
mass matrices KG and MG.

Note: To join elements in an x-wise sense, the radius of curvature and semi-
vertex angle must be the same at the (curved) element interface.

2.7. BOUNDARY CONDITIONS

Speci"c boundary conditions may be applied to the model simply by removing
those rows/columns from KG and MG which correspond to "xed d.o.f.*hence any
combination of shear diaphragm, simple support, clamped or free edges, or corner
point supports, can be accommodated in the analysis. In the current work, the
support conditions are imposed at the layer 2 mid-plane, so some care has to be
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taken in de"ning exactly what each category means. A shear diaphragm permits an
in-plane translation across, and full rotations about, the mid-plane but prevents
w-wise motion normal to it; a simple support permits full rotation of the panel
about its mid-plane, but prevents all three translational freedoms there; a clamped
support prevents all three translational freedoms and shear deformation within
layer 2.

2.8. EQUATIONS OF MOTION

By assuming simple harmonic motion, and the absence of any forcing agency, the
governing equations of motion for free vibration can be obtained by deriving
Lagrange's equation from the expressions already obtained for the strain and
kinetic energies of the complete model. This yields the standard matrix-eigenvalue
form of the problem:

[KG!u2MG] MqN"0. (14)

The solution of equation (14) gives the natural frequencies in radian units, rendered
here in an appropriate form depending on the analysis. Corresponding to each
eigenvalue is an eigenvector which may be used in conjunction within equation (9)
to recover the associated displacement of each element in the model, and hence the
complete mode of the panel under consideration.

3. COMPARISON WITH OTHER WORK

3.1. CONVERGENCE STUDY FOR OPEN CONICAL SANDWICH PANELS

In order to gain con"dence with the h}p formulation presented here, it is
important to validate the convergence behaviour of the model. As mentioned in
section 1, the absence of any published results for open conical panels means that
any work presented here will likely serve as a benchmark for future analyses of this
type. To this end, convergence results are presented for a typical open conical
sandwich panel (whose de"ning properties are given in Table 2), with additional
veri"cation provided by a comprehensive "nite element analysis using the commer-
cially available package ANSYS [34].

Six di!erent trade-o! studies were conducted for this panel using various combi-
nations of the h- and p-parameters. These results are also presented in Table 2. It is
immediately obvious that the results from the current method converge monotoni-
cally and from above, as expected, and that very good agreement is obtained with
the results forthcoming from ANSYS.

The relatively slow convergence of the low-frequency results stems from the use
of the trigonometric assumed displacement functions; this feature has been noted
by their progenitors [28]. Whilst the single-element, with the highest possible
amount of p-enrichment, will clearly give the most accurate results for the least
overall number of d.o.f., it nonetheless can be computationally advantageous
to consider more creative mesh designs*such as the h"5, p"9 combination
illustrated in Table 2*since the low-frequency modes of the panel are likely to



TABLE 2

(a) Material and geometric properties de,ning the typical open conical sandwich panel
used to assess the convergence behaviour of the h}p methodology

Open sandwich cone no. 1 (symmetric section)

Material properties Thickness Elastic Poisson's Shear modulus Density
(mm) modulus ratio (GPa) (kg/m3)

(GPa)

Layer 1 (aluminium) 1)0 70)0 0)30 26)92 2700
Layer 2 (aluminium 8)0 0)0 N/A G

xh"0 G
zx
"0)15 Ghz"0)05 120.0

honeycomb core)
Layer 3 (aluminium) 1)0 70)0 0)30 26)92 2700

Geometry relative to Panel boundary / (deg) ¸ (mm) a (deg) R
o
(mm) R

T
(mm)

the mid-plane of conditions along the
layer 2: edges given by:

x"0 x"a h"0 h"/ 90 500 45 500 1000
S S F F

(b) Convergence properties of the current h}p method for an open sandwich panel
(natural frequencies in Hz)

Current h}p version Curent h}p version Current h}p version FEMs

h"1 h"5 h"10 720 elements
(13 176 d.o.f.)

f
1
"170)2 f

1
"166)3 f

1
"164)7 163)4

f
2
"175)4 f

2
"172)6 f

2
"171)1 169)8

p"8 f
3
"332)9 p"6 f

3
"331.9 p"5 f

3
"330)6 328)4

272 f
4
"350)3 544 f

4
"342)3 619 f

4
"340)3 336)8

d.o.f. f
5
"363)2 d.o.f. f

5
"358)1 d.o.f. f

5
"356)6 353.1

f
6
"384)0 f

6
"381)5 f

6
"380)7 376)2

f
1
"166)6 f

1
"164)2 f

1
"163)7

f
2
"172)5 f

2
"170)6 f

2
"170)1

p"10 f
3
"331)3 p"9 f

3
"330.2 p"8 f

3
"329)7

440 f
4
"343)9 1471 f

4
"339)4 2128 f

4
"338)4 same as above

d.o.f. f
5
"358)7 d.o.f. f

5
"355)8 d.o.f. f

5
"354)9

f
6
"381)4 f

6
"380)3 f

6
"379)9

sThe face plates and core were modelled by using Shell 91, a dedicated sandwich shell element
having eight nodes per element with six d.o.f. per node.
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involve signi"cantly more deformation around the panel's circumference than
along its length. Whichever mesh is used, the h}p methodology still provides very
accurate results from models with signi"cantly fewer d.o.f. than those used in
conventional "nite element analyses.

The "rst six modes of this open sandwich panel are shown in Figure 4,
illustrating low-frequency bending modes with the typical deformation pattern
mentioned above. Notice how the amplitude of a given mode decreases towards the
panel &&apex'' on account of the reducing panel radius causing an increase in the
local bending sti!ness.

Since the low-frequency modes of this panel involve a reasonable amount of
deformation around the circumference, a su$cient number of assumed shape
functions and/or h-element divisions needs to be included in the analysis to capture
this motion. This sort of behaviour has been well documented for cylinders and
other singly curved structures, so its occurrence here comes as no surprise.

3.2. CONVERGENCE STUDY FOR CIRCUMFERENTIALLY JOINED CONICAL
SANDWICH FRUSTA

Ramesh and Ganesan [10] presented various frequency and mode results for
conical sandwich frusta based on the earlier work of Sui and Bert [4] and Wilkins
et al. [5]. Since these cases have been well documented, it seems reasonable to use
them as the basis for a limited convergence study. The panel details are given in
Table 3(a), and two di!erent sets of circumferential boundary conditions were used
in keeping with reference [10], namely both ends clamped and both ends supported
on shear-diaphragms.s

The circumferentially continuous nature of a conical frustum suggests that at low
frequencies it will likely vibrate with considerably more half-waves around its
circumference than along its length. This observation leads to a rather di!erent
modelling strategy from the usual one adopted for an open panel*it will now be
more advantageous to divide the circumference of the frustum into considerably
more elements than the length. In this manner, a modest p-boost can be used in
each element such that the anticipated circumferential and lengthwise motions are
adequately represented by the assumed displacement pattern provided by the
model. (Obviously, a single element could also have been used, but this was not
considered computationally e$cient on account of the high degree of polynomial
enrichment that would have been necessary.)

To illustrate the above reasoning, two di!erent convergence studies are presented
for each cone; the results are shown in Tables 3(b, c). The results from the current
h}p method are seen to converge monotonically and from above to yield frequencies
marginally lower than those cited by Ramesh and Ganesan [10] and Wilkins
et al. [5]. It should be noted from Tables 3(b, c) that the methods used by both
previous groups of investigations [5, 10] have failed to capture some of the
sRamesh and Ganesan referred to their end condition as a simple support, which they de"ned as
one which suppressed circumferential and radial displacements. Since they did not suppress the
longitudinal displacement over the support, then strictly speaking the terminology &&shear diaphragm''
should have been used*this parlance has been adopted in the present work.



Figure 4. The "rst six natural frequencies and modes of a typical open conical sandwich panel with
its circumferential ends simply supported. (h}p results quoted with h"10 and p"8; ANSYS results
in parentheses).
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TABLE 3

(a) Material and geometric properties de,ning the complete conical sandwich frustum
used to assess the convergence behaviour of the h-p methodology

Complete sandwich frustum (after Ramesh and Ganesan [10])

Material properties Thickness Elastic Poisson's Shear modulus Density
(mm) modulus ratio (GPa) (kg/m3)

(GPa)

Layer 1 (glass epoxy) 0)535 25)59 0)20 7)03 2800
Layer 2 (aluminium 7)62 0)0 N/A G

xh
"0)0 G

zx
"0)2249 G

hz
"0)1286 36.8

honeycomb)
Layer 3 (glass epoxy) 0)535 25)59 0)20 7)03 2800

Geometry relative to the mid-plane of layer 2: / (deg) ¸ (mm) a (deg) R
o
(mm) R

T
(mm)

360 1834)3 5)07 570)2 732)9

(b) Convergence properties of the current h}p method for the frustum described in
¹able 3(a); the ends x"0 and x"a are clamped around their circumference. (Natural

frequencies in Hz)

Natural Current h}p Current h}p version FEMs [34] Ramesh and Wilkins
frequencies version h"8 h"16 Fully Ganesan et al.

in converged [10] [5]
ascending results using

order a total of
912 elements
with 15 840

d.o.f.

f
1

120)2 108)3 (4, 1) 107)3 (4, 1) 110)9 (4, 0) 110)7 (4, 1)
f
2

136)1 122)3 (3, 1) 119)7 (3, 1) 128)5 (3, 0) 126)0 (3, 1)
f
3

136)2 125)8 (5, 1) 126)8 (5, 1) 126)3 (5, 0) 126)7 (5, 1)
f
4

174)1 163.5 (6, 1) 165)8 (6, 1) * *

f
5

p"6 189)5 p"8 173)5 (2, 1) 170)9 (2, 1) 185)6 (2, 0) 177)2 (2, 1)
f
6

480 226)6 2736 186)2 (5, 2) 182)9 (5, 2) 188)6 (5, 1) 197)7 (5, 2)
f
7

d.o.f. 290)7 d.o.f. 195)7 (4, 2) 190)0 (4, 2) 202)3 (4, 1) 209)1 (4, 2)
f
8

291)3 206)8 (6, 2) 206)6 (6, 2) * *

f
9

335)6 212)4 (7, 1) 215)2 (7, 1) * *

f
10

340)8 240)5 (3, 2) 234)7 (3, 2) 252)9 (3, 1) 252)9 (3, 2)

sThe face plates and core were modelled by using Shell 91, a dedicated sandwich shell element
having eight nodes per element with six d.o.f. per node.
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TABLE 3. Continued

(c) Convergence properties of the current h}p method for the frustum described in
¹able 3(a); the ends x"0 and x"a are supported on shear-diaphragms (SD) around

their circumference. (Natural frequencies in Hz)

Natural Current h}p Current h}p version FEMs [34] Ramesh and Wilkins
frequencies version h"8 h"16 Fully Ganesan et al.

in converged [10] [5]
ascending results using

order a total of
912 elements
with 16 608

d.o.f.

f
1

84)4 84)1 (3, 1) 85)5 (3, 1) 85)5 (4, 0) 85)7 (4, 1)
f
2

84)7 84)6 (4, 1) 85)6 (4, 1) 89)4 (3, 0) 86)8 (3, 1)
f
3

114)3 113)6 (5, 1) 115)7 (5, 1) 113)3 (5, 0) 113)3 (5, 1)
f
4

134)7 134.6 (2, 1) 136)3 (2, 1) 145)1 (2, 0) 134)8 (2, 1)
f
5

p"6 157)2 p"6 155)8 (6, 1) 158)6 (6, 1) * *

f
6

880 164)4 1584 163)2 (5, 2) 166)5 (5, 2) 167)7 (5, 1) 160)6 (5, 2)
f
7

d.o.f. 168)6 d.o.f. 167)8 (4, 2) 170)9 (4, 2) 177)6 (4, 1) 165)4 (4, 2)
f
8

194)4 192)2 (6, 2) 196)1 (6, 2) * *

f
9

208)0 205)4 (7, 1) 208)8 (7, 1) * *

f
10

216)5 216)0 (3, 2) 219)8 (3, 2) 222)1 (3, 1) 212)8 (3, 2)

sThe face plates and core were modelled by using Shell 91, a dedicated sandwich shell element
having eight nodes per element with six d.o.f. per node.
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low-frequency modes (i.e., of the "rst 10 modes which occur below 240 Hz,
the 4th, 8th, and 9th are missing), and thus their results form an incomplete set.
The veracity of the current results is con"rmed further by an independent, fully
converged, "nite element analysis, the results of which are also presented in Tables
3(b, c). From the level of agreement demonstrated here, it can be concluded that the
h}p formulation works very e$ciently for circumferentially closed conical sandwich
frusta.

Since the frequency results forthcoming from the current h}p method provide
no immediate indication of the number of complete waves around the circumference
(m) and the number of half-waves along the length (n), it was necessary to determine
this information indirectly by plotting the corresponding natural modes. As
an example, the "rst 10 modes for the (well-converged) clamped case are presented
in Figure 5 from which the (m, n) classi"cations are clearly visible. It should
be noted here that Ramesh and Ganesan used an usual nomenclature
to describe the number of half-waves along the length of the shell (actually
n!1), which explains the variance when compared with the present work and that
of Bert et al. .

One "nal observation of interest has been made concerning the second case
considered here, in which the shell is supported around its circumference by shear



Figure 5. Identifcation of the (m, n) classi"cation using the modal information for a circumferen-
tially clamped conical sandwich frustum. The panel details are described in Table 3(a), and the natural
frequencies are given in Table 3(b).
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diaphragms. The lowest frequency of vibration actually occurs at 13)1 Hzs al-
though this result has not been included in Table 3(c). This frequency corresponds
to a longitudinal back and forth motion of the conical shell passing over its
sThe ANSYS model also captured this mode, which occurred at 13)0 Hz.



Figure 5. Continued.
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circumferential supports, which is permissible for this particular boundary condi-
tion; for a cylindrical shell, this would amount to a zero-frequency rigid-body
motion. However, for a conical panel, such a motion will cause the supports to
induce a circumferential hoop strain in the shell, and hence involve elastic deforma-
tions and inertia e!ects, thus resulting in a non-zero frequency. Clearly, the greater
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the coning angle, the more severe will be the induced circumferential hoop strain,
and hence the higher the natural frequency of this particular motion. No mention of
this e!ect has been made by previous authors.

3.3. FURTHER ANALYTICAL RESULTS

To complete the analytical study, the four panels used as the basis for the
experimental work (see section 3.4) were also the subject of a full theoretical
investigation. The panels are de"ned by the geometric and material data presented
in Table 4, and then analyzed according to various sets of idealized classical
boundary conditions. (The two sets of most interest here comprised simply
supported or clamped circumferential ends in conjunction with free longitudinal
edges.) Results for the "rst 10 natural frequencies of each panel are presented in
Tables 5}8 (Figures 6 and 7 show a representative sample of the calculated natural
modes for Test Panel d 1 subject to both circumferential ends being simply
supported and clamped respectively). The h}p results have been calculated using
a 10 element mesh with each element polynomially enriched to a level of p"8 in
order to guarantee a well-converged solution. Likewise, an additional set of (fully
converged) results has also been computed using ANSYS. Good agreement
between both sets of numerical results (to within 4%) can be seen for every
combination of panel and boundary condition considered here.
TABLE 4

Geometric data relative to the ¸ayer 2 mid-plane de,ning the four conical sandwich
test panels used in this work

Test panel R
0

(m) R
T

(m) ¸ (m) h
1

(mm) h
2

(mm) h
3

(mm) / (deg) a (deg)

1 0)228 0)560 0)728 0)50 12)44 0)50 90 24)5
2 0)228 0)560 0)728 0)50 12)44 0)50 120 24.5
3 0)401 0)497 0)995 0)50 12)44 0)50 90 5)5
4 0)427 0)528 0)995 0)50 23)91 0)50 90 5)8

Material data common to all four conical sandwich test panels used in this work

Face plate T3 aluminium plate
properties

o"2695 kg/m3 E"72)40 GPa v"0)33 G"27)22 GPa

5052/F40 aluminium #ex-core
Core
properties o"91)3 kg/m3 E

xx
+0 GPa vhx"0)0 Ghz"0)159 GPa

Ehh+0 GPa l
xh"0)0 G

zx
"0)469GPa

G
xh"0 GPa



TABLE 5

Comparison of theoretical results calculated for an open conical sandwich panel

Test panel no. 1

Boundary condition Frequency Current h}p method. FEM
(Hz) Well converged Fully converged

h"10, p"8 8298 d.o.f.
1808 d.o.f.

f
1

267)5 263)8
f
2

339)6 335)6
f
3

565)7 559)4
Around x"0: C f

4
596)4 598)0

Around x"a: C f
5

655)7 658)0
Around h"0: F f

6
799)3 765)6

Around h"/: F f
7

987)3 1014)8
f
8

1006)5 1029)4
f
9

1084)6 1083)1
f
10

1204)6 1158)5

Boundary condition Frequency Current h}p method. FEM
(Hz) Well converged Fully converged

h"10, p"8 8568 d.o.f.
2128 d.o.f.

f
1

219)8 219)6
f
2

300)8 298)3
f
3

494)4 498)0
Around x"0: S f

4
508)6 508)5

Around x"a: S f
5

594)1 591)4
Around h"0: F f

6
752)5 719)8

Around h"/: F f
7

847)2 869)9
f
8

871)8 894)1
f
9

1013)5 1008)1
f
10

1141)1 1097)9
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3.4. INITIAL EXPERIMENTAL WORK CONDUCTED ON OPEN CONICAL SANDWICH PANELS

An experimental programme was devised with the intention of furnishing some
actual test data for each of the four conical sandwich panels described in Table 4
and thus complementing the theoretical study presented above. This was felt to be
especially important in view of the limited amount of work that has been carried
out in this speci"c subject area. However, once testing had commenced, it rapidly
became apparent that there were some signi"cant and unexpected di!erences
between the experimental test samples and the theoretical models*hence no
explicit results are quoted here.

These di!erences were subsequently identi"ed as (a) constructionally-induced
and (b) rig-induced, as explained in what follows.



TABLE 6

Comparison of theoretical results calculated for an open conical sandwich panel

Test panel no. 2

Boundary condition Frequency Current h}p method FEM
(Hz) Well converged Fully converged

h"10, p"8 11 226 d.o.f.
1808 d.o.f.

f
1

296)9 294)0
f
2

303)7 299)3
f
3

565)3 555)9
Around x"0: C f

4
609)5 612)8

Around x"a: C f
5

655)3 652)2
Around h"0: F f

6
711)9 705)6

Around h"/: F f
7

843)1 802)4
f
8

974)1 979)9
f
9

997)4 1027)5
f
10

1051)8 1058)8

Boundary condition Frequency Current h}p method FEM
(Hz) Well converged Fully converged

h"10, p"8 11 592 d.o.f.
2128 d.o.f.

f
1

254)7 253)7
f
2

261)7 260)7
f
3

490)8 487)7
Around x"0: S f

4
512)4 515)9

Around x"a: S f
5

603)3 594)5
Around h"0: F f

6
687)1 683)5

Around h"/: F f
7

794)3 755)6
f
8

845)5 862)7
f
9

861)6 883)7
f
10

970)8 959)1
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(a) Although the panels were constructed to the dimensions quoted in Table 4, it
was observed that the skin-to-core bond likely accounted for a signi"cant volume
of adhesive which had not been included in the theoretical model. Also, there were
core "ller inserts used to prevent local crushing of the core when the support "xture
bolts were tightened, and edge protection strips that had not been included in the
mathematical models. Such constructional details were shown to increase the
overall test panel mass above the theoretically predicted value by as much as 27%,
see Table 9.

(b) Pairs of curved "breglass angle brackets were used to support the test panels
around their circumferential edges in an attempt to mimic the tail-boom
sub-structure of a typical civil aircraft (see Figure 8). Although the "breglass



TABLE 7

Comparison of theoretical results calculated for an open conical sandwich panel

Test panel no. 3

Boundary condition Frequency Current h}p method FEM
(Hz) Well converged Fully converged

h"10, p"8 9054 d.o.f.
1808 d.o.f.

f
1

199)6 195)4
f
2

250)7 246)5
f
3

447)1 441)0
Around x"0: C f

4
454)8 449)4

Around x"a: C f
5

467)8 462)1
Around h"0: F f

6
628)6 598)6

Around h"/: F f
7

732)7 734)5
f
8

733)4 735)6
f
9

865)6 836)7
f
10

904)2 892)5

Boundary condition Frequency Current h}p method FEM
(Hz) Well converged Fully converged

h"10, p"8 9300 d.o.f.
2128 d.o.f.

f
1

176)8 171)3
f
2

232)7 226)1
f
3

386)2 382)7
Around x"0: S f

4
413)5 393)6

Around x"a: S f
5

448)5 442)7
Around h"0: F f

6
610)3 579)9

Around h"/: F f
7

633)3 638)6
f
8

673)7 641)9
f
9

826)8 791)7
f
10

862)5 855)6
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bracket pairs "tted the contours of each test panel perfectly, and facilitated
multiple bolting through the upper and lower #anges around both of their ends,
the brackets nonetheless proved insu$ciently sti! to represent a genuine
clamped edge. This is a salutary example of the di!erence between an engineered
item fabricated for &&service'' and its idealized representation in a theoretical
model.

The net e!ect of the practical fabrication and mounting details described above
was to reduce each set of test panel natural frequencies by anything between 12 and
20% of the corresponding theoretically obtained values. There seems little to be
gained from presenting these data since one is not strictly comparing like with like.



TABLE 8

Comparison of theoretical results calculated for an open conical sandwich panel

Test panel no. 4

Boundary condition Frequency Current h}p method FEM
(Hz) Well converged Fully converged

h"10, p"8 9882 d.o.f.
1808 d.o.f.

f
1

252)7 250)7
f
2

327)9 325)4
f
3

496)6 490)2
Around x"0: C f

4
576)6 585)9

Around x"a: C f
5

627)0 637)5
Around h"0: F f

6
888)3 839)0

Around h"/: F f
7

922)5 921)7
f
8

962)7 1009)4
f
9

993)9 1043)3
f
10

1048)5 1051)1

Boundary condition Frequency Current h}p method FEM
(Hz) Well converged Fully converged

h"10, p"8 10 140 d.o.f.
2128 d.o.f.

f
1

194)7 195)1
f
2

287)9 287)6
f
3

461)3 453)3
Around x"0: S f

4
463)0 470)7

Around x"a: S f
5

527)2 533)4
Around h"0: F f

6
805)5 806)3

Around h"/: F f
7

840)0 843)4
f
8

855)7 849)6
f
9

869)1 882)8
f
10

1046)6 1045)6
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4. CONCLUSIONS

Open conical sandwich panels, consisting of a segment of a complete conical
sandwich shell, "gure occasionally as a stand-alone structural item, but are more
commonly found as constituent components of larger, built-up structures such as
the tapering tail section of a modern civil aircraft. A detailed formulation of an h}p
sandwich panel "nite element, based on a novel set of trigonometric assumed
displacement functions, has been presented in this paper. The element so developed
can be used to model both open conical sandwich panels or circumferentially closed
conical sandwich frusta with equal facility. The convergence properties of this
element have been established for di!erent combinations of the h- and p-parameters,
thereby assuring its integrity for more general use. Since very little work has



Figure 6. The "rst ten natural frequencies and modes of Test Panel no. 1 with its circumferential
ends simply supported. (h}p results quoted with h"10 and p"8; ANSYS results in parentheses).
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been reported on the vibration characteristics of either circumferentially-closed or
open conical sandwich panels, the main thrust of this work has been to present and
validate an e$cient modelling technique, rather than to perform numerous para-
meter studies and sensitivity studies.

To this end, it has been shown that the level of mesh re"nement which gives
well-converged frequencies for one particular sandwich cone geometry almost
certainly will not give similarly converged frequencies for a di!erent geometry, so in



Figure 7. The "rst ten natural frequencies and modes of Test Panel no. 1 with its circumferential
ends clamped. (h}p results quoted with h"10 and p"8; ANSYS results in parentheses).

VIBRATION OF CONICAL SANDWICH PANELS 373
general it will be necessary to validate the convergence of each and every case. This
is especially important for conical sandwich panels, since their vibration behaviour
is quite di!erent from cylindrical sandwich panels, and it does not seem possible to
predict what e!ect a certain parameter change will have on a conical panel, even if
its e!ect on a similarly dimensioned cylindrical sandwich panel is already known.

One of the best ways to assess the relative computational merits of the h}p version
of the FEM developed here and the h-version of the FEM that is commercially
available is to compare the CPU time each requires to solve identical problems and



TABLE 9

Comparison of the measured and calculated masses of each test panel

Test panel Measured mass Calculated mass % di!erence
no. (kg) (kg)

1 2)42 1)90 27
2 3)19 2)53 26
3 3)25 2)70 20
4 4)60 3)66 26

Figure 8. Details of the test-rig end "xtures, illustrating the means of providing a circumferential
clamped edge support (longitudinal section).
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furnish answers to similar accuracy. However, such a comparison is fraught with
di$culties since both codes are written for completely di!erent purposes and are
hosted on di!erent computer platforms. (The h}p code used here is essentially R&D
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software written in FORTRAN 90, using various (non-vectorized) NAG
subroutines*by contrast, ANSYS is a fully developed commerical code utilizing
highly e$cient wavefront solvers.) These disparate factors prevent any simple
like-for-like comparisons. The next best performance measure, which is based on
the total number of d.o.f. needed to de"ne the resulting eigenproblem, is the one
adopted here by the authors.

On this basis, the studies reported here have shown that the overall performance
of the h}p formulation considerably exceeds that of the more general commerical
software package. Perhaps this is not surprising when it is understood that the
work presented here is tailored speci"cally to conical sandwich panels, whereas the
commercial package makes use of a more general sandwich shell element. Even so,
it is worth noting that by using the h}p version of the FEM in preference to the
h-version, it is possible to obtain well-converged answers using only 25% of the
latter's total number of degrees of freedom (see Tables 2, 3 and 5}8). The
considerable savings in the "anl size of matrix-egenvalue problem that result when
compared with conventional "nite element type analyses could usefully be em-
ployed should typical parameter studies, or repetitive calculations arising from an
optimization algorithm, be required at the design stage.

It should also be noted that the methodology advanced here for a generic conical
panel can also be used to analyze open or closed cylindrical sandwich shells (a"03,
R

0
"R

T
set to the radius of the cylinder), and #at annular sectorial sandwich plates

(a"903, R
0

set to the inner radius and R
T

set to the outer radius of the plate).
Finally, two important points were highlighted by the practical work carried out

here, namely the not insigni"cant mass of the core-to-face-plate adhesive and the
mounting "xture insert "llers, and the "nite #exibility of the panel mountings. If
future, theoretical models are to be used to predict the vibration response of conical
sandwich structures in a practical context, then it will be important that such
models include (i) the inertial and elastic e!ects of the adhesive layers between the
face plates and the core, and (ii) a more realistic representation of the boundary
condition interface around the curved ends.
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